字节跳动最新文本生成图像 AI,训练集里居然没有一张带文字描述的图片?!

一个文本-图像对数据都不用,也能让 AI 学会看文作图?来自字节的最新 text2image 模型,就做到了。实验数据显示,它的效果比 VQGAN-CLIP 要真实,尤其是泛化能力还比不少用大量文本-图像数据对训练出来的模型要好很多。

嗯?不给文字注释 AI 怎么知道每一张图片代表什么?这个模型到底咋训练出来的?

不用文字训练也能根据文本生成图像

首先,之所以选择这样一种方式,作者表示,是因为收集大量带文字的图像数据集的成本太高了。而一旦摆脱对文本-图像对数据的需求,我们就可以直接用大型无文本图像数据集 (比如 ImageNet)来训练强大且通用的 text2image 生成器。字节实现的这个模型叫做 CLIP-GEN,它具体是怎么操作的?

一共分三大步。

首先,对于一幅没有文本标签的图像,使用 CLIP 的图像编码器,在语言-视觉(language-vision)联合嵌入空间(embedding space)中提取图像的 embedding。

接着,将图像转换为 VQGAN 码本空间(codebook space)中的一系列离散标记(token)。也就是将图像以与自然语言相同的方式进行表示,方便后续使用 Transformer 进行处理。其中,充当 image tokenizer 角色的 VQGAN 模型,可以使用手里的无标记图像数据集进行训练。

最后,再训练一个自回归 Transformer,用它来将图像标记从 Transformer 的语言-视觉统一表示中映射出对应图像。经过这样的训练后,面对一串文本描述,Transformer 就可以根据从 CLIP 的文本编码器中提取的文本嵌入(text embedding)生成对应的图像标记(image tokens)了。

那这样全程没有文本数据参与训练的文本-图像生成器,效果到底行不行?

性能与清华 CogView 相当

作者分别在 ImageNe 和 MSCOCO 数据集上对 CLIP-GEN 进行训练和评估。首先,用 MS-COCO 验证集中的六个文本描述生成样本。CLIP-GEN 和其他通过大量文本-图像对训练的 text2image 生成模型的效果对比如下:

其中,VQGAN-CLIP 的结果比较不真实,并且伴随严重的形状扭曲。来自清华的 CogView 号称比 DALL-E 更优秀,在这里的实验中,它确实可以生成良好的图像结构,但在纹理细节上差点儿事儿。DF-GAN 可以生成具有丰富细节的合理图像,但也容易产生局部伪影。

作者认为,与这些对比模型相比,CLIP-GEN 的图像细节更丰富,质量更高一些,比如它就很好地诠释了第二组文字中要求的“水中倒影”(不过不太能理解“三只毛绒熊“中的数字概念)。

定量实验结果基本证明了这一结论:

CLIP-GEN 拿到了最高的 FID-0、FID-1 分数;CapS 得分(衡量输入文本和生成图像之间的语义相似性)除了比 CogView 低 4%,比其他模型都高很多。

此外,作者还发现,CLIP-GEN 的泛化能力似乎也不错。在下面这组非常规的文字描述中,比如生成“一只会飞的企鹅”,“叼雪茄的狗”、“有脸和头发的柠檬”……CLIP-GEN 基本都可以实现,别的模型却不太能理解。

作者介绍

本模型的五位作者全部来自字节。

一作 Wang Zihao 本科毕业于北京理工大学,博士毕业于 UC 伯克利,曾在谷歌担任 3 年软件开发工程师,现就职于 TikTok。

通讯作者名叫易子立,本科毕业于南京大学,博士毕业于加拿大纽芬兰纪念大学,目前在字节担任人工智能专家(主要研究多模态、超分辨率、人脸特效),在此之前,他曾在华为工作。

论文地址:

https://arxiv.org/abs/2203.00386

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

文章价值:
人打分
有价值还可以无价值
置顶评论
    热门评论
      文章发布时间太久,仅显示热门评论
      全部评论
      一大波评论正在路上
        取消发送
        软媒旗下人气应用

        如点击保存海报无效,请长按图片进行保存分享