离开 OpenAI 的大神卡帕西「开课了」:新项目日增千星,还是熟悉的 min 代码风

大神 Karpathy 从 OpenAI 离职,原本扬言要大休一周。

但转眼,新项目就已上线 GitHub,日增上千星的那种。

还是熟悉的卡式配方:

74 行 Python 代码搞定大模型标记化(tokenization)中常用的 BPE(Byte Pair Encoding)算法,实现该算法的最小、最干净代码版本。

甚至:

是不是有点快 3 万标星的 nanoGPT 内味儿了?这波啊,还真是让网友们给猜着了:

Time to cook。

毕竟,Karpathy 除了前特斯拉 AI 总监、OpenAI 创始成员的 title,最为网友所熟悉的,就是“AI 领域大善人”、“擅长将复杂问题简单化的卡老师”这样的身份了(手动狗头)。

BPE 代码最小化版本

还是具体来看一下,Karpathy 老师这次又煮出了一锅什么样的饭。

项目名 minbpe 已经说明一切:BPE 算法的最小、最干净代码版本。

BPE(字节对编码)是随着 GPT-2 而流行起来的标记化算法。现在,包括 GPT 系列、Llama 系列和 Mistral 在内,一众大模型都用到了这一算法来训练分词器。

BPE 的主要优势在于:

  • 高效:通过合并频繁出现的字节对来逐步构建词汇表,可以有效地减少模型需要处理的词汇量。

  • 灵活:可以将词汇表外的单词分解为已知子词来进行处理,有助于模型理解和生成未在训练中出现的单词。

而在 minbpe 这个项目中,Karpathy 提供了两个 Tokenizer(分词器),它们都可以执行分词器的 3 个主要功能:

  • 基于特定文本训练词汇表和合并操作

  • 把文本编码成 token

  • 把 token 解码为文本

具体而言,在 basic.py 中,minbpe 用 74 行 Python 代码,完成了对直接在文本上运行的 BPE 算法的最简单实现。

regex.py 中,minbpe 实现的是一个正则表达式分词器,该分词器利用正则表达式进一步拆分输入的文本。

另外,在正则表达式分词器的基础之上,minbpe 还在 gpt4.py 中提供了一个 GPT4Tokenizer,可以准确在线 tiktoken 库中的 GPT-4 标记化。

注:tiktoken 是一种快速 BPE 分词器。

base.py 则是一个基类,包含了训练、编码和解码的存根(stubs),提供了保存和加载的功能,并集成了一些常见的辅助工具函数。在实际应用中,开发者应该通过继承这个基类来实现具体的分词器功能。

Karpathy 提到,他在霉霉的维基百科文本上尝试训练了两个主要的分词器。train.py 在他的 M1 MacBook 上运行时间大概为 25 秒。

如果你还有什么不清楚的地方,别担心,卡老师已经计划要出视频了:

Karpathy 出走 OpenAI,许多猜测指向他的“下一篇章”是大语言模型系统(LLM OS):

如今正式工作还未揭示,但看样子 Karpathy 已经拾起了“教学育人”的副业,小伙伴们可以蹲起来了。

参考链接:

  • https://github.com/karpathy/minbpe/

本文来自微信公众号:量子位 (ID:QbitAI),作者:鱼羊

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

文章价值:
人打分
有价值还可以无价值
置顶评论
    热门评论
      文章发布时间太久,仅显示热门评论
      全部评论
      一大波评论正在路上
        取消发送
        软媒旗下人气应用

        如点击保存海报无效,请长按图片进行保存分享