大模型「幻觉」全无?图神经网络成破解核心,精准预测因果消除「幻觉」

【新智元导读】Alembic 首次推出用于企业数据分析和决策支持的无「幻觉」人工智能。

原来大模型的「幻觉」,真的可以完全消除!近日,AI 初创公司 Alembic 首次宣布,一种全新 AI 系统完全解决了 LLM 虚假信息生成问题。也就是说,饱受诟病的 LLM 幻觉,被彻底攻破了。

联创兼首席执行官 Tomás Puig 在接受 Venture Beat 独家采访时透露,「取得这一关键突破在于,AI 能够在海量企业数据集中,识别随时间变化的因果关系,而不仅仅是相关性」。

他接着表示,我们基本上让生成式 AI 免于产生幻觉。它可以确定性输出,也可以谈论因果关系。

解决幻觉问题

「幻觉」一直是企业采用聊天机器人和虚拟助理等人工智能系统的主要障碍。

此前的 AI 模型即使可以生成看似逼真的文本,还是经常会产生错误或无意义的信息,也就是所谓的「幻觉」,导致在关键业务应用中的部署存在风险。

为了消除这种「幻觉」,Alembic 通过技术手段把 AI 变得足够安全可靠,方便企业获得各种数据分析、预测和决策支持等服务。

根据公司提供的图表,Alembic AI 系统可以从各种来源摄取数据。

处理「可观测性和分类器」模块和几何数据组件,然后将结果输入因果图神经网络(GNN),生成确定性预测和战略建议。

Alembic 为此不但建立了超级计算机基础设施,还开发了新的数字技术,将企业数据表示为时间感知图神经网络。

Puig 解释说「每当我们看到其中一个连锁反应或杠杆时,我们就能了解企业的所有原始组成部分」。

「这些就像一个个小型神经元,我们把它们放入一个巨大的图神经网络中。」

「但这是一个具有因果意识和时间意识的图神经网络。」

因果推理引擎驱动确定性人工智能

Alembic 突破的核心是一种新型图神经网络。

它充当因果推理引擎获取数据,组织成一个复杂节点和连接网络,捕捉事件和数据点随着时间推移形成的关联。

Puig 对 VentureBeat 说「这几乎就是企业的 3D 呈现。想象一下,你可以看到每个客户和企业每个部门之间的每一次互动,以及这些互动是如何通过组织串联起来推动结果的」。

关键在于,AlembiAI 不仅能从这些数据中学习模式和相关性,还能识别实际推动业务成果的因果关系。

通过了解历史结果背后的「原因」,它可以高度预测未来行动的影响,甚至推荐实现预期目标的最佳干预措施。

Alembic 技术演示视频展示了分析复杂数据并生成具体战略建议的过程。

事实上,Alembic 不仅仅是在技术上实现了突破,它在市场化应用过程中也取得了相当的进步。

财富 500 强兴趣浓厚

人们对 Alembic 兴趣斐然,该公司与财富 500 强企业私下里进行了充分的交流,并获得了 Nvidia 公司的博士专家和未公开的大客户的广泛认可。

「当我们把它展示给 Forrester 和 Gartner 时,他们基本上都傻眼了。我从未见过这样的场景,到目前为止,他们让我找了 26 位分析师,既有 IT 方面的,也有 MarComms 方面的」。

根据 IDC 的数据,到 2024 年,人工智能技术的支出预计将超过 5000 亿美元。

凭借早期客户的浓厚兴趣,以及 Gartner 和 Forrester 等有影响力的分析公司的认可,Alembic 似乎已做好准备,撼动拥挤的企业人工智能市场。

但该公司仍然面临着挑战,即如何证明其最终技术能够超越早期试点,为大型企业带来更加准确的结果产出。

随着人工智能竞争的白热化,Alembic 的「无幻觉」方法可能会成为一个关键卖点,也可能成为研究突破与实际影响之间差距的警示故事。

参考资料:

  • https://venturebeat.com/ai/exclusive-alembic-debuts-hallucination-free-ai-for-enterprise-data-analysis-and-decision-support/

本文来自微信公众号:新智元 (ID:AI_era)

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

文章价值:
人打分
有价值还可以无价值
置顶评论
    热门评论
      文章发布时间太久,仅显示热门评论
      全部评论
      请登录后查看评论
        取消发送
        软媒旗下人气应用

        如点击保存海报无效,请长按图片进行保存分享