.hd-box .hd-fr

Meta 公司发布 Imagine Yourself:无需为特定对象微调的个性化图像生成 AI 模型

2024-08-23 13:41IT之家(故渊)1评

IT之家 8 月 23 日消息,从社交媒体到虚拟现实,个性化图像生成因其在各种应用中的潜力而日益受到关注。传统方法通常需要针对每位用户进行大量调整,从而限制了效率和可扩展性,为此 Meta 公司创新提出了“Imagine Yourself” AI 模型。

传统个性化图像生成方法挑战

目前的个性化图像生成方法通常依赖于为每个用户调整模型,这种方法效率低下,而且缺乏通用性。虽然较新的方法试图在不进行调整的情况下实现个性化,但它们往往过度拟合,导致复制粘贴效应。

Imagine Yourself 创新

Imagine Yourself 模型不需要针对特定用户微调,通过单一模式能够满足不同用户的需求。

该模型解决了现有方法的不足之处,如倾向于毫无变化地复制参考图像,从而为更通用、更方便用户的图像生成流程铺平了道路。

Imagine Yourself 在保存身份、视觉质量和及时对齐等关键领域表现出色,大大优于之前的模型。

该模型的主要组成部分包括:

这些创新技术使该模型能够生成高质量、多样化的图像,同时保持强大的身份保护和文本对齐功能。

Imagine Yourself 使用可训练的 CLIP 补丁编码器提取身份信息,并通过并行交叉注意模块将其与文本提示整合在一起,准确保存身份信息并对复杂的提示做出反应。

该模型使用低阶适配器(LoRA)仅对架构的特定部分进行微调,从而保持较高的视觉质量。

Imagine Yourself 的一个突出功能是生成合成配对(SynPairs)数据。通过创建包含表情、姿势和光照变化的高质量配对数据,该模型可以更有效地学习并产生多样化的输出结果。

值得注意的是,在处理复杂的提示词方面,与最先进的模型相比,它在文本对齐方面实现了 +27.8% 的显著改进。

研究人员使用一组 51 种不同身份和 65 个提示对 Imagine Yourself  进行了定量评估,生成了 3315 幅图像供人类评估。

该模型与最先进的(SOTA)adapter-based 模型和 control-based 模型进行了比对,重点关注视觉吸引力、身份保持和提示对齐等指标。

人工注释根据身份相似性、及时对齐和视觉吸引力对生成的图像进行评分。与 adapter-based 模型相比,Imagine Yourself 在提示对齐方面有了 45.1% 的显著提高,与基于控制的模型相比有了 30.8% 的提高,再次证明了它的优越性。

Imagine Yourself 模型是个性化图像生成领域的一大进步。该模型无需针对特定对象进行调整,并引入了合成配对数据生成和并行注意力架构等创新组件,从而解决了以往方法所面临的关键挑战。

IT之家附上参考地址

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

下载IT之家APP,分享赚金币换豪礼
相关文章
大家都在买广告
热门评论
查看更多评论