我国科学家突破二维半导体材料异质外延技术,在光探测材料与器件领域取得重要进展
IT之家 12 月 11 日消息,上海应用技术大学团队携手国科大杭州高等研究院、美国麻省理工学院(MIT)等国内外单位,在二维半导体材料异质外延方面取得重要进展。
项目背景简介
随着我国在高性能探测技术领域应用需求的持续增长,对新型光探测材料提出了更高要求。
作为光电探测技术最核心材料之一,异质外延半导体材料因其优异的光电性能展现出广阔的应用前景。
然而,受晶格匹配限制,这些材料在单一衬底上的异质外延往往面临较高的晶格应变,导致界面质量下降,晶体缺陷增加,面临诸多“卡脖子”技术,同时昂贵的半导体设备及复杂的半导体工艺技术限制了其广泛应用。
项目介绍
上海应用技术大学材料科学与工程学院房永征、刘玉峰教授团队,依托“光探测材料与器件”上海高水平地方高校创新团队及上海市光探测材料与器件工程技术研究中心等高水平平台,通过“面内自适应异质外延”策略,成功实现了二维半导体单晶材料在 c 面蓝宝石衬底上的高取向外延生长。
该方法通过晶体取向的 30° 旋转,有效调控压应力与拉应力,实现应变的可容忍性,使不同晶格常数的异质外延单晶与蓝宝石衬底之间形成可控的界面应变。更重要的是,基于该异质外延材料的光探测器件较非外延器件展现出更优异的光探测性能。
实验结果表明,基于在 c 面蓝宝石衬底上异质外延生长的异质外延单晶构建的光电探测器在 450 nm 波长的激光照射下,响应时间为 367.8 μs,探测率达到 3.7×10¹² Jones,线性动态范围 (LDR) 高达 113 dB,远超传统玻璃衬底器件。
此外,该光电探测器在多次开关循环和长时间测试中保持稳定,展现出优异的运行可靠性和长的器件寿命,为新型半导体材料异质外延生长及其器件应用提供了新的实验方法和理论支撑。
相关成果以“In-Plane Adaptive Heteroepitaxy of 2D Cesium Bismuth Halides with Engineered Bandgaps on c-Sapphire”为题于 2024 年 12 月 4 日在材料类顶刊 Advanced Materials (2024,2413852,1-11,影响因子:27.4) 上发表。
IT之家附上参考地址
广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。